
Asynchronous Chess

Nathaniel Gemelli Robert Wright Roger Mailler∗

Information Systems Research Information Systems Research SRI International
Air Force Research Lab. Air Force Research Lab. 333 Ravenswood Dr

Rome, NY 13441 Rome, NY 13441 Menlo Park, CA 94025
gemellin@rl.af.mil wrightr@rl.af.mil mailler@ai.sri.com

ABSTRACT

We present adversarial agent work being done in a real-time
asynchronous environment, Asynchronous Chess (AChess).
AChess is a real-time competitive experiment platform for
developing new agent technologies using single-agent rea-
soning and/or multi-agent cooperative strategies. We aim
to provide a simplified asynchronous environment that is
stochastic in its nature, but easily described from its foun-
dations as a synchronized game. The goal is to design agent
technologies that perform better in these domains than ex-
isting single- and multi-agent methods. This research ap-
plies to non-deterministic agent-based search and reason-
ing technologies for use in a simplified, yet still very com-
plex, real-time environment for competitive and adaptive
agents.

KEYWORDS: adversarial environments, asynchronous
environments, bounded reasoning, decision cycle, ratio-
nal agents, real-time reasoning

1 Introduction and Background

Asynchronous Chess (AChess) is a new environment for
developing and testing real-time reasoning technologies.
AChess is an extension of traditional chess, with one ma-
jor difference, asynchrony. It eliminates the rule that makes
chess a turn-based game. With this one extension to chess,
AChess becomes an incredibly rich environment to study
competitive agents in real-time. We propose this as a com-
mon environment for studying strictly software-based agent
solutions as opposed to physical real world environments,
or any other hardware-based platforms. AChess is not
the first real-time competitive environment. Similar efforts
have been done with simulated markets in [6] and [9], and
software based environments like RoboCup-Rescue Simu-
lation League [7].

The most popular of current common real-time en-
vironments being used today is arguably RoboCup [8].

∗Work was done while at Cornell University

RoboCup, or Robot Soccer, is a real-time competitive en-
vironment which focuses on tackling the numerous and dif-
ficult challenges involved in enabling robots to play soc-
cer. The challenges include real-time sensor fusion, reactive
behavior, strategy acquisition, learning, real-time planning,
multi-agent systems, context recognition, vision, strategic
decision making, motor control, and intelligent robot con-
trol [8]. These challenges are all very important to study,
but complicate the area of research particular to real-time
reasoning. Incorporating all the above listed challenges
involves tremendous overhead of different subsystems for
robotic competition, and takes away from the heart of the
AI research that could be done.

AChess can be considered a more ideal environment to
study AI in game-based competitions because of the fact
that the focus is on a smaller subset of the above mentioned
areas, includingreal-time reasoning, adversarial prob-
lems, andadaptive and learning approaches, rather than
all the physical problems that hardware based environ-
ments, such as RoboCup, try to incorporate. By remov-
ing these physical (motors) and sensor (vision) aspects of
the problem, we make the problem easier to approach from
a strict software reasoning view. RoboCup does have a
software environment, however it still involvesfuzzy real-
world physical issues (i.e. locations, speeds, trajectories,
etc.) that make the problem more difficult. AChess is dif-
ferentiated from a RoboCup type environment in that we do
not have problems related to uncertainty in action. When a
ball is kicked in RoboCup, there is some uncertainty as to
where the ball will go. For AChess, a piece is moved and
it follows the specified path. AChess also introduces het-
erogeneous piece types which not only makes the problem
more interesting from a reasoning perspective, but also in-
creases the complexity of the problem. RoboCup does not
currently consider agent heterogeneity. Every agent has the
same capabilities.

RoboCup was implemented because there was some crit-
icism against using traditional games: chess, backgammon,
Yale-shooting problem, and the Monkey-Banana game [8],
in that they are too abstract and do not fit well or cannot be



easily applied to real world problems. AChess was devel-
oped for similar reasons: real world problems are too open
and difficult to capture, define, and measure applicable so-
lutions with a game like traditional chess. AChess is not as
abstract a game as chess but does keep much of the simplic-
ity of the game making it a good tool for studying reason-
ing. The asynchronous extension of the problem makes it
more reminiscent of a real-world problem like football or
strategic war games.

Soccer is seen as a common approachable “real-world”
problem that is somewhere in the middle of abstract games
and domain specific real-world problems. By mimicking
the game of soccer, RoboCup has become hugely popu-
lar. In a similar manner, chess was chosen as the basis for
AChess because it is a universal game that can be easily ap-
proached by almost anyone, even people who do not play
chess well.

The rest of this paper is presented as follows. Section 2
describes the AChess environment, including the rules, how
pieces move, piece rates, and the actual simulator architec-
ture. Section 3 will present some of the research issues that
are important to multi-agent systems research and adaptive
agent solutions that exist in the AChess environment. Sec-
tion 4 presents basic classes of agents created to test the
AChess environment. Section 5 presents some early ob-
servations and measurables from the AChess environment.
Section 6 will discuss future work and Section 7 will sum-
marize.

2 Environment Description

Asynchronous Chess is very similar to standard chess, with
one key difference: players do not have to wait for one an-
other in order to make a move. From this simple change
comes a rich environment in which to explore methods for
time-critical reasoning. AChess is not intended to be a hu-
man playable game. Instead, the focus of this project is
to develop an environment in which intelligent agents must
reason not only about the current state of the chess board,
but about the likelihood that their opponent will move in a
specific amount of time, the cost and value of reasoning, the
speed and movement of pieces, etc.

2.1 The Rules

The core rules of AChess are very similar to standard chess.
An AChess game uses the standard set of pieces (king,
queen, rook, bishop, etc.), arranged in the conventional way
at the start of the game. The key difference between chess
and AChess is that players may move their pieces at any
time with the following restrictions:

• Each movement must adhere to the standard chess

Board
State

2D Display

PlayerThread PlayerThread

Move
Queue

3D
Interface

ServerThread ServerThread

3D
Display
Module

Server

Legend

Socket

Dataflow

Agent Agent

Figure 1: A structural diagram of the AChess simulation
environment.

movements for the piece. For example, rooks can only
move along rows or columns.

• Pieces move at a specified rate which is defined as mil-
liseconds per space. For example, in some configura-
tions, it may take a pawn 800 milliseconds to move
from one space to the next.

• Once a piece is in motion, its path cannot be changed.

• Pieces stop moving when they reach their destination
or intersect another piece, friend or foe.

• If a player attempts to move a piece that is currently
flagged as moving, then the piece move is rejected.

Like standard chess, pawns are promoted when they
reach the opponents base row. Unlike standard chess,
knights cannot “jump” their own pieces because that could
lead to the condition where more than one piece occupies
the same location at the same time. Finally, play continues
until one or both of the kings are killed instead of check-
mated.

2.2 Piece Movement

Unlike standard chess, the asynchrony of AChess intro-
duces the potential for multiple pieces to move into a space
at the same time. To deal with this, a special set of “de-
confliction” rules were created to determine at what time
a piece moves into a space, which pieces are killed, and
which pieces stop when multiple pieces attempt to occupy
the same board location. The deconflictions rules are as fol-
lows:



• If a player attempts to move into a space already occu-
pied by another one of its pieces, the moving piece is
stopped at its current location.

• If a player moves a piece into a space occupied by a
non-moving opponent’s piece, the opponents piece is
killed and the players piece is stopped at that location.

• If a player attempts to move more than one piece into
the same unoccupied space at the same time, one of the
pieces is randomly chosen to move into the space and
all others are stopped.

• If a player moves a piece into a space at the same time
the opponent is attempting to move a piece into that
square, one of the pieces is randomly killed and the
other takes the space and is stopped.

2.3 Piece Rates

One of the unique characteristics of AChess is the ability
to define unique movement rates for each piece type in the
simulation. In doing so, a much more robust and interest-
ing environment emerges that helps to differentiate AChess
from other agent competition environments in use today.
The piecerate is simply the amount of time that a piece
must wait in order to move to the next square.

Once a move is submitted, given that it adheres to the
above mentioned movement policies and rules, the piece is
placed in its new desired location, and must then wait its
rate amount of time until it can move to another square.
Obviously, a faster rate is a good thing as you are not a
“sitting duck” so to speak. Slower move rate pieces are at
a slight disadvantage due to the fact that they have to sit
in a static position for longer than some of their enemies.
In preliminary agent experiments, we have found that these
slow rate pieces become liabilities for offensive maneuvers,
and are better suited for defensive use.

2.4 The Simulator

The basic AChess architecture is presented in figure 1. The
overall design of the system is a client-server architecture
built using standard socket-based communications between
the major components. There are three major pieces in the
system, (1) The Server, (2) ServerThread, and (3) the 3D
display module, each of which can be run on a separate
computer. The entire system was implemented in Java, in-
cluding the 3D display module.

2.4.1 The Server

The core of the system is the Server. As the figure shows,
the server is composed of a 2D display module (see figure
2), two player threads for sending and receiving messages

Figure 2:The AChess 2D display.

from the agents that are playing the game, and a 3D in-
terface thread for sending state messages periodically to the
3D display module (see figure 3). The server is fully param-
eterizable allowing the user to set the port numbers for the
client connections, the size and initial layout of the board,
and the specific movement rates of the pieces. In addition,
the server incorporates a logging facility, which can be used
to replay any game and can be used to collect metrics and
performance statistics on the players.

The server is actually composed of four separate threads.
The first two of these threads are for handling the socket
communication with the players (annotated as PlayerThread
in the figure). These player threads pull incoming “move”
messages from the agents and insert them into the pending
move queue. The third thread is used to push state informa-
tion to a connected 3D display module.

The most important thread in the system is the state
thread. The state thread takes pending or continuing moves
from the move queue and updates the current state of the
game. The process by which this occurs is fairly compli-
cated because of the asynchrony caused by the agents con-
stantly submitting moves to the server for execution. The
state thread executes at a fixed interval which can be varied
as a parameter of the server. Any events that occur during
the interval between successive executions of this thread are
considered to have occurred at the same time. This is im-
portant because the timing of this thread can greatly impact
the behavior of an AChess game by either discretizing too
many or too few events during a fixed period of game time.

Certainly one of the main purposes of the state thread is to
enforce the rules of the game. To do this, on each execution
of this thread, the server performs the following sequence



of actions:

1. The server calculates the set of pieces moving into
each space during this execution of the cycle.

2. The server then checks to ensure that the move is legal
(prevents pawns from capturing forward for example).

3. The server deconflicts all moves where a single player
is moving multiple pieces into one space. This leaves
at most one pending move into a space per player.

4. The server deconflicts all moves where a player is
moving a piece into a space occupied by one of its
own pieces by stopping the move. This may remove
one of the pending moves. The effects of this action
are chained if necessary.

5. The piece is then moved into the space, killing any
non-moving enemy piece within it.

6. If two pieces belonging each to a different team try
to move to the same position, the server randomly
chooses one of the pieces to occupy the space. The
other piece is killed.

7. If either (or both) of the kings was killed, the game is
declared over.

Once the current state of the board is computed, the 2D
display is updated, statistics are calculated, and the new
state of the board is pushed to the two players. In this man-
ner, the players internal state can be kept appraised of their
ever changing environment.

2.4.2 ServerThread

The next major component of the AChess architecture is the
agent interface denoted as ServerThread (see figure 1). As
shown in figure 1, ServerThread connects to the Server via
the PlayerThread, providing the agent interface for commu-
nication to the Server. The agent interface provides a stan-
dardized way of connecting and disconnecting to the server,
sending and receiving moves, and receiving state informa-
tion from the server. To someone designing an agent, this
interface provides seamless, thread-safe access to the cur-
rent state of the game, and functions for specifying moves
without the worry of the particular message encodings. Sev-
eral agents, written to test the AChess game, will be dis-
cussed briefly in section 4.

2.4.3 3D Display Module

The last major component that has been designed for the
AChess game is a 3D display module (see figure 3). The 3D
display module was created entirely using JAVA3D. Like an

Figure 3:A screenshot of the 3D display used for AChess.

agent, the 3D module connects to the server via a socket to
allow it to be run on a separate machine. This was done
for two reasons. First, the 3D module uses quite a bit of
processing power and can therefore slow down the speed
of the simulator when competing for processing resources.
Second, by having this module separate from the server, a
user can elect to start up and shutdown the display without
impacting the current simulation run.

3 Research Issues

In this section, we will discuss some of the intriguing re-
search issues associated with creating agents for the AChess
environment. Here we attempt to scope why AChess will
be a beneficial environment for studying single-agent and
multi-agent reasoning approaches, as well as coordination
and cooperation strategies. A multitude of issues need to be
addressed in Multi-Agent Systems (MAS). The same is true
in the Asynchronous Chess environment when approaching
viable solutions to successfully reach the goal of a defined
game. Because a player connecting to the AChess server
can actually be viewed as its own MAS, we see the same
challenging issues of MAS in AChess.

• Metrics
Having a metric for intelligence is not only useful for
comparing System A to System B, but also for com-
paring System A in an early stage of development to
System A in a more mature stage of development [11].
This is true in the AChess environment where we are
doing incremental improvements in the design of our



agents. The metrics for AChess measure the intelli-
gent decision-making ability of moves made given a
bounded limit of reasoning. Theoretically, provided a
quantitative performance measure exists, methods can
be developed to optimize a certain system [11]. We are
fortunate in that we can attempt to place a quantitative
measure over the performance of the agents in AChess.
A first look at AChess will tell you that there is much
going on, too many variables to tweak, so we must start
simple in forming metrics for measuring our agents
effectiveness. Simple win/loss records could suffice,
but this will give us no feedback as tohow effective
an agent did if it won, orhow bad an agent did if it
lost. If we can put an effective measure onhow good
or bad an agent did for a particular game in a match,
and how thatscore will filter up to a higher level of
analysis, we could provide a steady comparable mech-
anism for agent to agent grading. One must be careful
in the assignment of an effective measure, otherwise
the weakness will be emphasized throughout all the
play of the game as seen in [12]. Realistically, no one
set of metrics will be able to be an effective measure
of an agent’s worth. Since games played in AChess
could potentially have different assigned goals or re-
strictions. For instance, to loosely mimic real-world
problems, taking the enemy king with minimal piece
loss on both sides could be viewed as accomplishing
a military task with minimal collateral damage. Mea-
surements taken are only as useful as what can be in-
ferred from them.

• Zero-Sum to Non-Zero-Sum
Related to the above discussion of metrics, we should
also introduce the issue of game classification. Our
work can be viewed as a transformation from the tradi-
tional synchronized, turn-based, game of chess, to the
competitive, real-time game we see in AChess. With
such a transition, we are not only talking about a transi-
tion from synchronous to asynchronous, but from zero-
sum to non-zero-sum games. At a coarse granularity,
we can view AChess in the same zero-sum game way
as its contemporary, chess, win-or-lose, 1 + (-1) = 0.

It is at a much finer granularity of observation that
we transform from zero-sum game to the potentially
non-zero-sum game we will want to represent in fu-
ture learning agent approaches. This transformation is
essential to the end-game state in that we will need a
scoring system to determine not onlywho the winner
was, but also quantifyhow well that particular agent
did in the game.

• Coherence
Things happen in parallel in the AChess environment.
Agents must develop a sense of coherence in their be-

haviors. Because we have a set of components acting
independently of one another (i.e. both clients and the
server components), coherence becomes a major issue.
The agents will simultaneously perceive and act upon
their environment, submitting actions to be carried out
to the server. If an agent is not continuously updating
its view of the environment, it may reason about incor-
rect information, leading to bad decisions and seem-
ingly irrational behavior. This is a major task of the
server to keep the actions that were submitted in or-
der, and ensure that what the agent thought would be
done, is done correctly. However, the mere fact that an
agent made a decision given its current internal belief
of what the state “looked” like is not enough to ensure
deterministic results. There must be feedback so that
an agent can observe the effect of an action on the envi-
ronment, as well aslearn how quickly its opponent is
making decisions and changing its environment. This
can be quite different from real world models where a
purely reactive agent will obtain immediate feedback
from its environment. In a software system where a
server is the point of main control, latency between it
and its clients will create an uncertainty factor. This
high amount of uncertainty and latency in the AChess
environment leads to sometimes highly irrational be-
havior of our initial heuristic-based agent approaches.

• Speed of Decision Making
An agent is just something that acts [10], but what hap-
pens when an agent not only acts, but considers what
is the best action to take? It becomes rational, and acts
to achieve the best outcome, or best expected outcome
in times of uncertainty [10]. A clear distinction exists
betweenjust acting andreasoning about the state
before acting. At what point does reasoning become
futile? This is important in AChess, because if you are
not making efficient decisions, not justrational deci-
sions, you may be beaten by a quicker,less rational,
agent.

Because of the dynamic and non-deterministic (with
regards to a player’s opponent) nature of our envi-
ronment, perceptual information overload may be too
much for the processing capability of the agent. As
we can see, in an adversarial environment where your
opponent is making continual changes to the environ-
ment, speed of decision making is essential, but we
do not want to lose quality of the decision. We can
filter out parts of the perceptual information, and pay
particular attention to only the parts of the information
that we really need to make a quick quality decision.
Should we do quick sensing of the environment? Or do
we only perceive our environment once we have made
full sets of decisions about our previous view of what



the state of the environment was? When we sense our
environment, our agents should decide when to make
their decisions based on the rate of change in that en-
vironment. In other words, if an agent finds that its
environment is changing at a rate of X, then clearly
it would be to the agent’s benefit to make decisions
within X - α time, α being what it “thinks” is a good
cushion for submitting a decision before the environ-
ment changes again. Also, since the dynamics of the
environment are not measured to be exact (i.e. server
delay and such can change from update to update), we
make an averaged case based reason on what X is and
whatα should be. The variableα should be dynamic
in that it should change given how well the agents de-
cisions were carried out in the environment, or how
many of the actions that the agent submitted actually
did what they were intended to do. We briefly present
what we discovered about reasoning and reacting in
the experimental section (section 5).

• Complexity
There is an obvious explosion of computational com-
plexity that arises when attempting to do traditional
search or game tree building. At the ply level of a
search tree, we can see that the number of possible
states is on the order ofnm

· pv, wheren is the to-
tal number to pieces that could possibly be moved by
one team,m is the number of possible move combi-
nations for those pieces,p is the number of pieces the
adversary has on the board, andv is the number of
possible moves that the adversary can move. The ba-
sic idea is that the search space is absolutely enormous
and that no traditional exhaustive (or heuristic) search
technique will suffice, especially with real-time con-
straints as in this environment. This is an open issue
and probably is not a limiting factor in progress within
this environment, but should be addressed.

4 Agent Development

The primary focus of this paper is on the AChess environ-
ment itself, but an informal introduction to the agents de-
veloped to perform initial testing in the environment is nec-
essary. These agents were developed to test the system and
demonstrate logical solutions to a given game design. The
current agents were developed in incremental steps, or gen-
erations, to create classes of agents. We have developed
three classes of agents for AChess, however this is not a
complete list (see Section 6):

• Random agent (rand)

• Scripted agent (script)

• Heuristic agent (heur)

After each generation of agent was designed, implemented,
and debugged it was submitted for testing. Following test-
ing it was considered final and placed in an archive to be
used as a benchmark for next generation agent testing. It
should be noted that each class of agent developed could
be designed as either a single-agent or multi-agent imple-
mentation. Below we discuss the agent that was developed
and the purpose for developing it in the initial environment
development.

4.1 Random Agent

The Random agent functions by moving every available
piece in a random way. Since each piece is flagged for a cer-
tain amount of time (its rate) as being unavailable to make
another move (a cooldown), it is a simple determination to
find the pieces to berandomlymoved. Once those pieces
are identified, their legal moves are calculated (i.e. all the
moves that a piece can legally make from its current posi-
tion and state) and one is chosen with equal probability. A
Random agent is always moving pieces, and if it happens
to win a game, it is a function of luck or catching the other
agent off guard because it was in a “reasoning” state. This
agent provides a nice baseline because its strategy is un-
affected by changes in the environment such as piece rate
variability, which will be discussed in the experiment sec-
tion.

Purpose: Due to the simplistic nature of the Random
agent, we were able to simulate tremendous server load by
submitting as many moves as possible for long periods of
time (i.e. Random agents do not really try to win, so games
last a longer amount of time). What we found was that
overloading the server only adversely affected the player
that was submitting moves too quickly. The reason why
is that the thread responsible for handling the hyper-active
agent’s commands was effectively disabled like in a denial
of service attack, while the performance other threads on
the server were not affected nearly as much.

4.2 Scripted Agent

The Scripted agents are given a plan, a pre-defined series
of movements, which they are expected to execute. They do
not deviate from the plan. All of our pre-defined strategies
allowed agents to potentially win because of the speed at
which a pre-defined plan can be executed and the fact that
we instructed our pieces to be in typical king observed loca-
tions. Our class of scripted agents is essentially a very basic
planning agent approach and does no justice to true agent
planning techniques.

Purpose: These agents were developed to test the stabil-
ity of the system and ensure that the commands that were



Decision Cycle Delay +1ms +10ms +50ms +100ms +200ms +400ms +800ms
Heuristic Wins 658 791 652 553 599 243 47
Random Wins 342 209 348 447 401 757 953

Table 1:This table shows the wins of heuristic agent against the random agent in matches where the decision cycle of the
heuristic agent is artificially lengthened. Uses SPR.

being submitted were being properly carried out. These
agents are great tools for tutoring learning agents because
of their predictable nature.

4.3 Heuristic Agent

Many different agents were developed for the class of
Heuristic agents. In general, each agent has special-
ized rules for each type of pieces movement and strategy.
Heuristic agents have goals and rules which tell them how
they should achieve their goals based on the current state
of the board. We found these agents to be useful tools for
testing the AChess environment and soon to be benchmark
opponents for more advanced agent approaches.

Purpose: The creation of the heuristic agents was more
to find out what kinds of basic strategies would work well
in an environment like AChess. Each agent in this class
was developed slightly different, and therefore had differ-
ent strengths and weaknesses. Strategies developed ranged
from pure brute force attempts to overpower the enemy
by rushing all pieces toward the opponents king, to low-
est/greatest path cost calculations to find the opponents king
in a more elegant way. A general strategy that surfaced from
all the heuristic agents developed has been to keep pieces
moving whenever possible, even if there is no way to take
an opponents piece. It seems that there is an inherent rea-
son behind this observation in that you do not want to give
your opponent a steady state system to reason about. By not
making moves, you are not putting pressure on your oppo-
nent to perceive and act quickly, and giving your adversary
an advantage.

5 Initial Observations

The preliminary sets of simulations that were done in the
environment were to test the system and identify the im-
mediate types of metrics that were available for collection
and agent analysis. In the current AChess implementation,
the API provides a certain amount of statistics about intra
and inter game play. All concentrated and deep analysis on
these statistics will be useful for agents doing online, adap-
tive learning, and/or offline, post-game analysis.

Currently available metrics for a player to gather about it-
self or its opponent include (but will not be limited to in fu-

ture versions) intra- and inter- game simulation time, moves
submitted, actual moves carried out, moves rejected, pieces
remaining, pieces taken, win-loss ratios, and scoring (game
defined). Below, we briefly discuss some early observations
we made with our initial agents in AChess.

All simulation matches between any two agents consisted
of 1000 games. We ran tests with two types of rate sets;
specialized and non-specialized piece rates. The special-
ized piece rates (SPR) for the piece types were as follows:
King 200ms , Queen 50ms, Rook 100ms, Knight 75ms,
Bishop 100ms , Pawn 150ms. The non-specialized piece
rates (NSPR) were set to have all piece types have a uniform
rate of 100ms. For our experiments, we used one agent from
each class of random, scripted and heuristic. Our heuristic
and scripted agents were designed to function best for SPR.
Tests were run on a single machine with following speci-
fications: 3.4GHz Intel Pentium IV processor with Hyper-
Threading, 2GB of system RAM, using Fedora Core 3.

Of particular interest is, ”how the length of an agent’s
decision cycle determines the effectiveness of that agent in
the system”. In other words, can an agent that makes many
poorly made decisions out perform an agent that makes
fewer, but better, informed decisions in the AChess envi-
ronment? To answer this question we tested our random
agent against our heuristic agent and artificially lengthened
the decision cycle of the heuristic agent between matches.

We increased the decision cycle of the heuristic agent by
introducing a sleep timer which the agent had to wait for at
the end of each iteration in its decision loop. This was done
to artificially simulate a learning agents’ decision cycle,
as we had no readily available learning agents for AChess
at the time of this writing. Table 1 shows the sleep time
lengths for the heuristic agent and the resulting win/loss ra-
tio for the matches. Even using SPR, which heuristic agents
were designed to use, we can see that our heuristic agent
starts to underperform when the decision cycle gets too long
(approximately between the 200ms and 400ms intervals).
So, even an agent that makes really “bad” moves (random
agent) can overtake an agent that is making better decisions
(heuristic agent) if it takes too long to come to that decision.
This stresses that in a real-time adversarial environment,a
decision maker must carefully balance the amount of time
it devotes to making its decision and when to actually carry
out the actions. Otherwise, if the agent waits too long it will
be overrun by a speedier opponent regardless if that oppo-



Match SPR NSPR

script vs. rand 62.5 : 931.2 21.4 : 978.8
heur vs. rand 776.1 : 224.2 594.6 : 396.3
rand vs. rand 498.3 : 501.1 501.1 : 498.2

Table 2: Average wins for matches between agents for the
two piece movement rate sets.

Figure 4:Shows other metrics about which we can gather in
the AChess environment. Shown here is a heuristic agents
intra-game statistics.

nent is making informed decisions or not. It is this observa-
tion that leads us to believe that strategies such as anytime
algorithms [5] and resource-bounded reasoning [13] will be
successful approaches for developing agents in AChess.

Figure 2 shows average win rates for the agents over mul-
tiple matches of 1000 games each match. Both the SPR and
NSPR sets were tested. We can see that the agents designed
to take full advantage of the SPR do not perform nearly as
well in the NSPR matches as they did in matches where the
SPR sets were used. Because our heuristic agents, and es-
pecially our scripted agents, were designed specifically for
SPR, they are lacking a means of flexibility which will be
imperative for success in AChess. In general, modifying the
piece rates provides an excellent opportunity for researchin
adaptive agent strategies as in [3] and [4]. It also reveals that
our heuristic agent is not a good solution for an environment
in which conditions of the environment may change. As a
side note, we see that the rand vs rand results in Figure 2 can
be interpreted as showing a level of fairness in the system.
Neither the white player or black player has any advantage
over the other, and the rand agent is not affected by the SPR
or NSPR sets.

In figure 4 we see other first level metrics that were
recorded as a heuristic agent game is played.Moves sub-

mitted is simply the number of moves the agent submits
to the server for execution.Rejected movesis the number
of moves that were submitted to the server but rejected be-
cause they were not valid (i.e. went out of bounds of the
board or were non-reachable for that piece type).Pieces
movedis the total number of squares that were traversed by
all pieces throughout the simulation.Pieces remainingis a
count of what pieces are left at each time instance recorded.
Moves finishedis the number of moves that completed with-
out being taken or interrupted. By themselves, these statis-
tics are not very interesting for these basic agents we have
used to test the environment, but will be extremely useful
for further agent development, especially in reinforcement
learning techniques. An obvious extension of the current
statistics will be important, and more measurables will be
extracted from simulation runs as they are realized.

In conclusion, given what we have discussed in this sec-
tion, we feel that AChess provides a robust platform for
studying reasoning and learning algorithms in a real-time
adversarial environment.

6 Future Work

The majority of the work presented in this paper has been on
the agent environment of AChess itself. We are working on
improvements for the AChess environment such as; support
for tournament style competitions, support for and enforce-
ment of multi-agent teams, increased speed and efficiency,
and improving usability. These improvements should be
available in the next version of AChess which will be re-
leased soon.

AChess as an environment is interesting in its own right,
however, the future of AChess relies on the innovations that
come from agent researchers using it. It is our hope that
parties from all fields of artificial intelligence research will
take interest in the AChess problem and environment and
use it to engineer and test their own solutions. We believe
the competitive aspect of AChess should generate an enthu-
siastic response from persons desiring to have the best agent
solution for AChess. Hopefully it will become as popular
and fruitful as RoboCup has.

We are pursuing our own agent solutions for the AChess
problem with multi-agent planning with adaptability [3] and
temporal differencing methods [4]. These two technologies
have proven themselves in other domains with real-time
constraints and adversarial components. It should prove in-
teresting to adapt these technologies to the AChess environ-
ment, evaluate the performance of the agents, and explore
any potential improvements that might be discovered.

AChess is freely available and we encourage interested
parties to contact any of the authors for information on ob-
taining a current version of the AChess server and API.



7 Summary

We propose that AChess will become a popular common
experimental platform for studying real-time competitive
environments. The problem of real-time reasoning is pre-
served while avoiding the complicated nature of the phys-
ical world. This type ofsoftware environment research
is necessary in order to advance the state of real-time rea-
soning techniques that will eventually drive thehardware

implementations that exist today. In AChess,reasoning is
paramount.

Acknowledgment
This work has been partially funded by AFOSR and the AFRL
Intelligent Information Systems Institute and under the DARPA
Real program. Special thanks to Lt. Andrew Boes of the Air Force
and Jeffrey Hudack for their help in developing initial testagents,
and James Lawton for guidance and support.

8 References
[1] Simon, H.A. (1982). MODELS OF BOUNDED RATIONAL-
ITY (Vols. 1 and 2). Cambridge, MA: The MIT Press.
[2] D. J. Musliner, E. H. Durfee, and K. G. Shin, CIRCA: A Co-
operative Intelligent Real-Time Control Architecture IEEE Trans-
actions on Systems, Man, and Cybernetics , Vol 23 #6, 1993.
[3] Michael Bowling, Brett Browning, and Manuela Veloso. Plays
as effective multiagent plans enabling opponent-adaptiveplay se-
lection. In Proceedings of International Conference on Automated
Planning and Scheduling (ICAPS’04), 2004. in press.
[4] Sutton, R.S. (1988). Learning to predict by the methods of
temporal differences. Machine Learning 3: 9-44 Machine Learn-
ing - Kluwer Academic Publishers Boston Manufactured in The
Netherlands.
[5] Operational Rationality through Compilation of Anytime Al-
gorithms S. Zilberstein. Ph.D. dissertation, Computer Science Di-
vision, University of California at Berkeley, 1993.
[6] M.P. Wellman and P.R. Wurman, ”A Trading Agent Competi-
tion for the Research Community,” IJCAI-99 Workshop on Agent-
Mediated Electronic Trading, Aug. 1999.
[7] Tadokoro, S. and Kitano, H. and Takahashi, T. and Noda, I.
and Matsubara, H. and Shinjoh, A. and Koto, T. and Takeuchi, I.
and Takahashi, H. and Matsuno, F. and Hatayama, M. and Nobe, J.
and Shimada, S. (2000). The RoboCup-Rescue Project: A Robotic
Approach to the Disaster Mitigation Problem. Proceedings of the
2000 IEEE International Conference on Robotics and Automation,
4089-4094. San Francisco, CA, USA.
[8] Kitano, H. and Minoru, A. and Kuniyoshi, Y. and Noda, I.
and Eiichi, O. (1995). RoboCup: The Robot World Cup Initiative.
Proceedings of the 1995 JSAI AI-Symposium 95: Special Session
on RoboCup. Tokyo, Japan.
[9] Juan A. Rodrguez-Aguilar, Francisco J. Martn, Pablo Noriega,
Pere Garcia, and Carles Sierra Towards a Test-bed for Trading
Agents in Electronic Auction Markets. AIComm (1998). Vol.
11;N. 1 pp. 5-19.

[10] Russell S., Norvig P., ”Artificial Intelligence, A Modern Ap-
proach”, Prentice-Hall, (2003), pp. 34-35.
[11] R. Gao, L. Tsoukalas, Performance Metrics for Intelligent
Systems: An Engineering Perspective. Proceedings of the 2002
PerMIS Workshop. NIST Special Publication. Gaithersburg,MD.
[12] Kendall, G. and Whitwell, G. (2001). An Evolutionary Ap-
proach for the Tuning of a Chess Evaluation Function using Pop-
ulation Dynamics. Proceedings of the 2001 IEEE Congress on
Evolutionary Computation, 995-1002. Seoul, Korea.
[13] S. Koenig. Minimax Real-Time Heuristic Search. Artificial
Intelligence, 129, 165-197, 2001.


